Cilia Disorders in the Genomics Era: Historical Overview and Commentary on Ciliopathy Diagnostics

Author(s)

  • Sani Eskinazi

Full text (open access)

Abstract

  • Introduction: Motile and sensory (primary) cilia are organelles that are found on the surface of almost all cells. Defects in cilia cause a number of multi-organ diseases known as ciliopathies, which have clinically heterogeneous symptoms. This heterogeneity makes diagnosing cilia disorders challenging and clinicians often rely on genetic sequencing to delineate ciliopathies from other diseases. However, there is not a consensus on which sequencing tools are most optimal for ciliopathy diagnosis and research.

    Methods: Here I review the implications of next-generation sequencing tools for ciliopathy diagnostics. I describe landmark studies that showed ciliopathies as genetic conditions and transition to the advantages and challenges of using next-generation sequencing techniques. In particular, I compare studies that utilized targeted sequencing with those that used whole-exome and/or whole-genome sequencing.

    Discussion: High throughput screens can identify novel cilia genes and show promise as a robust diagnostic tool in clinical settings. Moreover, I compare the effectiveness of whole-exome and whole-genome sequencing both for basic science research and clinical applications, arguing that whole-exome sequencing is a sufficient first pass in clinical settings. I also acknowledge that ciliopathies are associated with many, both significant and insignificant, genetic variants making interpreting next-generation sequencing data an ongoing challenge for scientists and clinicians.

    Conclusion: This review demonstrates the increasing body of knowledge on cilia genomics and highlights that next-generation sequencing will be integral towards optimizing diagnostics for these heterogeneous and debilitating group of disorders.

Date

  • October, 2023

Citation

Areas

  • Biology

References

  1. Ali, Hamad, Fahd Al-Mulla, Naser Hussain, Medhat Naim, Akram M. Asbeutah, Ali AlSahow, Mohamed Abu-Farha, et al. 2019. “PKD1 Duplicated Regions Limit Clinical Utility of Whole Exome Sequencing for Genetic Diagnosis of Autosomal Dominant Polycystic Kidney Disease.” Scientific Reports 9 (1): 1–13. https://doi.org/10.1038/s41598-019-40761-w.

  2. Baker, Kate, and Philip L. Beales. 2009. “Making Sense of Cilia in Disease: The Human Ciliopathies.” American Journal of Medical Genetics Part C: Seminars in Medical Genetics 151C (4): 281–95. https://doi.org/10.1002/ajmg.c.30231.

  3. Barr, Maureen M., and Paul W. Sternberg. 1999. “A Polycystic Kidney-Disease Gene Homologue Required for Male Mating Behaviour in C. Elegans.” Nature 401 (6751): 386–89. https://doi.org/10.1038/43913.

  4. Belkadi, Aziz, Alexandre Bolze, Yuval Itan, Aurélie Cobat, Quentin B. Vincent, Alexander Antipenko, Lei Shang, Bertrand Boisson, Jean-Laurent Casanova, and Laurent Abel. 2015. “Whole-Genome Sequencing Is More Powerful than Whole-Exome Sequencing for Detecting Exome Variants.” Proceedings of the National Academy of Sciences 112 (17): 5473–78. https://doi.org/10.1073/pnas.1418631112.

  5. Braun, Daniela A., and Friedhelm Hildebrandt. 2017. “Ciliopathies.” Cold Spring Harbor Perspectives in Biology 9 (3). https://doi.org/10.1101/cshperspect.a028191.

  6. Breslow, David K., and Andrew J. Holland. 2019. “Mechanism and Regulation of Centriole and Cilium Biogenesis.” Annual Review of Biochemistry 88 (1): 691–724. https://doi.org/10.1146/annurev-biochem-013118-111153.

  7. Castro-Sánchez, Sheila, María Álvarez-Satta, Mohamed A. Tohamy, Sergi Beltran, Sophia Derdak, and Diana Valverde. 2017. “Whole Exome Sequencing as a Diagnostic Tool for Patients with Ciliopathy-like Phenotypes.” PLOS ONE 12 (8): e0183081. https://doi.org/10.1371/journal.pone.0183081.

  8. Chebib, Fouad T., and Vicente E. Torres. 2016. “Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016.” American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 67 (5): 792–810. https://doi.org/10.1053/j.ajkd.2015.07.037.

  9. Chen, Jianjun, Nizar Smaoui, Monia Ben Hamed Hammer, Xiaodong Jiao, S. Amer Riazuddin, Shyana Harper, Nicholas Katsanis, et al. 2011. “Molecular Analysis of Bardet-Biedl Syndrome Families: Report of 21 Novel Mutations in 10 Genes.” Investigative Ophthalmology & Visual Science 52 (8): 5317–24. https://doi.org/10.1167/iovs.11-7554.

  10. Choksi, Semil P., Gilbert Lauter, Peter Swoboda, and Sudipto Roy. 2014. “Switching on Cilia: Transcriptional Networks Regulating Ciliogenesis.” Development 141 (7): 1427–41. https://doi.org/10.1242/dev.074666.

  11. Cornils, Astrid, Ashish K. Maurya, Lauren Tereshko, Julie Kennedy, Andrea G. Brear, Veena Prahlad, Oliver E. Blacque, and Piali Sengupta. 2016. “Structural and Functional Recovery of Sensory Cilia in C. Elegans IFT Mutants upon Aging.” PLOS Genetics 12 (12): e1006325. https://doi.org/10.1371/journal.pgen.1006325.

  12. Eisenberger, Tobias, Christian Decker, Milan Hiersche, Ruben C. Hamann, Eva Decker, Steffen Neuber, Valeska Frank, et al. 2015. “An Efficient and Comprehensive Strategy for Genetic Diagnostics of Polycystic Kidney Disease.” PLOS ONE 10 (2): e0116680. https://doi.org/10.1371/journal.pone.0116680.

  13. Forsythe, Elizabeth, and Philip L. Beales. 2013. “Bardet–Biedl Syndrome.” European Journal of Human Genetics 21 (1): 8–13. https://doi.org/10.1038/ejhg.2012.115.

  14. Geoffroy, Véronique, Corinne Stoetzel, Sophie Scheidecker, Elise Schaefer, Isabelle Perrault, Séverine Bär, Ariane Kröll, et al. 2018. “Whole-Genome Sequencing in Patients with Ciliopathies Uncovers a Novel Recurrent Tandem Duplication in IFT140.” Human Mutation 39 (7): 983–92. https://doi.org/10.1002/humu.23539.

  15. Harris, Holly K., Tojo Nakayama, Jenny Lai, Boxun Zhao, Nikoleta Argyrou, Cynthia S. Gubbels, Aubrie Soucy, et al. 2020. “Disruption of RFX Family Transcription Factors Causes Autism, Attention Deficit/Hyperactivity Disorder, Intellectual Disability, and Dysregulated Behavior.” MedRxiv, September, 2020.09.09.20187104. https://doi.org/10.1101/2020.09.09.20187104.

  16. Hildebrandt, Friedhelm, Thomas Benzing, and Nicholas Katsanis. 2011. “Ciliopathies.” New England Journal of Medicine 364 (16): 1533–43. https://doi.org/10.1056/NEJMra1010172.

  17. Horani, Amjad, Todd E. Druley, Maimoona A. Zariwala, Anand C. Patel, Benjamin T. Levinson, Laura G. Van Arendonk, Katherine C. Thornton, et al. 2012. “Whole-Exome Capture and Sequencing Identifies HEATR2 Mutation as a Cause of Primary Ciliary Dyskinesia.” American Journal of Human Genetics 91 (4): 685–93. https://doi.org/10.1016/j.ajhg.2012.08.022.

  18. Horani, Amjad, Thomas W Ferkol, Susan K. Dutcher, and Steven L Brody. 2016. “Genetics and Biology of Primary Ciliary Dyskinesia.” Paediatric Respiratory Reviews 18 (March): 18–24. https://doi.org/10.1016/j.prrv.2015.09.001.

  19. Ishikawa, Hiroaki, and Wallace F. Marshall. 2011. “Ciliogenesis: Building the Cell’s Antenna.” Nature Reviews Molecular Cell Biology 12 (4): 222–34. https://doi.org/10.1038/nrm3085.

  20. Jin, Hua, and Maxence V. Nachury. 2009. “The BBSome.” Current Biology: CB 19 (12): R472-473. https://doi.org/10.1016/j.cub.2009.04.015.

  21. Katsanis, Nicholas, Philip L. Beales, Michael O. Woods, Richard A. Lewis, Jane S. Green, Patrick S. Parfrey, Stephen J. Ansley, William S. Davidson, and James R. Lupski. 2000. “Mutations in MKKS Cause Obesity, Retinal Dystrophy and Renal Malformations Associated with Bardet-Biedl Syndrome.” Nature Genetics 26 (1): 67–70. https://doi.org/10.1038/79201.

  22. King, Stephen M. 2016. “Axonemal Dynein Arms.” Cold Spring Harbor Perspectives in Biology 8 (11). https://doi.org/10.1101/cshperspect.a028100.

  23. Koboldt, Daniel C., Karyn Meltz Steinberg, David E. Larson, Richard K. Wilson, and Elaine Mardis. 2013. “The Next-Generation Sequencing Revolution and Its Impact on Genomics.” Cell 155 (1): 27–38. https://doi.org/10.1016/j.cell.2013.09.006.

  24. Lee, Jeong Ho, Jennifer L. Silhavy, Ji Eun Lee, Lihadh Al-Gazali, Sophie Thomas, Erica E. Davis, Stephanie L. Bielas, et al. 2012. “Evolutionarily Assembled Cis-Regulatory Module at a Human Ciliopathy Locus.” Science (New York, N.Y.) 335 (6071): 966–69. https://doi.org/10.1126/science.1213506.

  25. Leppert, Mark, Lisa Baird, Kent L. Anderson, Brith Otterud, James R. Lupski, and Richard Alan Lewis. 1994. “Bardet–Biedl Syndrome Is Linked to DNA Markers on Chromosome 11 q and Is Genetically Heterogeneous.” Nature Genetics 7 (1): 108–12. https://doi.org/10.1038/ng0594-108.

  26. Lucas, Jane S., Stephanie D. Davis, Heymut Omran, and Amelia Shoemark. 2020. “Primary Ciliary Dyskinesia in the Genomics Age.” The Lancet. Respiratory Medicine 8 (2): 202–16. https://doi.org/10.1016/S2213-2600(19)30374-1.

  27. Magescas, Jérémy, Sani Eskinazi, Michael V. Tran, and Jessica L. Feldman. 2021. “Centriole-Less Pericentriolar Material Serves as a Microtubule Organizing Center at the Base of C. Elegans Sensory Cilia.” Current Biology: CB 31 (11): 2410-2417.e6. https://doi.org/10.1016/j.cub.2021.03.022.

  28. Mann, Nina, Daniela A. Braun, Kassaundra Amann, Weizhen Tan, Shirlee Shril, Dervla M. Connaughton, Makiko Nakayama, et al. 2019. “Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients.” Journal of the American Society of Nephrology 30 (2): 201–15. https://doi.org/10.1681/ASN.2018060575.

  29. Mykytyn, Kirk, Darryl Y. Nishimura, Charles C. Searby, Mythreyi Shastri, Hsan-jan Yen, John S. Beck, Terry Braun, et al. 2002. “Identification of the Gene ( BBS1 ) Most Commonly Involved in Bardet-Biedl Syndrome, a Complex Human Obesity Syndrome.” Nature Genetics 31 (4): 435–38. https://doi.org/10.1038/ng935.

  30. Onoufriadis, Alexandros, Amelia Shoemark, Mustafa M. Munye, Chela T. James, Miriam Schmidts, Mitali Patel, Elisabeth M. Rosser, et al. 2014. “Combined Exome and Whole-Genome Sequencing Identifies Mutations in ARMC4 as a Cause of Primary Ciliary Dyskinesia with Defects in the Outer Dynein Arm.” Journal of Medical Genetics 51 (1): 61–67. https://doi.org/10.1136/jmedgenet-2013-101938.

  31. Oud, Machteld M., Ideke J. C. Lamers, and Heleen H. Arts. 2017. “Ciliopathies: Genetics in Pediatric Medicine.” Journal of Pediatric Genetics 6 (1): 18–29. https://doi.org/10.1055/s-0036-1593841.

  32. Patir, Anirudh, Amy M. Fraser, Mark W. Barnett, Lynn McTeir, Joe Rainger, Megan G. Davey, and Tom C. Freeman. 2020. “The Transcriptional Signature Associated with Human Motile Cilia.” Scientific Reports 10 (1): 10814. https://doi.org/10.1038/s41598-020-66453-4.

  33. Postema, Merel C., Amaia Carrion-Castillo, Simon E. Fisher, Guy Vingerhoets, and Clyde Francks. 2020. “The Genetics of Situs Inversus without Primary Ciliary Dyskinesia.” Scientific Reports 10 (1): 3677. https://doi.org/10.1038/s41598-020-60589-z.

  34. Qin, H., J. L. Rosenbaum, and M. M. Barr. 2001. “An Autosomal Recessive Polycystic Kidney Disease Gene Homolog Is Involved in Intraflagellar Transport in C. Elegans Ciliated Sensory Neurons.” Current Biology: CB 11 (6): 457–61. https://doi.org/10.1016/s0960-9822(01)00122-1.

  35. Reeders, S. T., M. H. Breuning, K. E. Davies, R. D. Nicholls, A. P. Jarman, D. R. Higgs, P. L. Pearson, and D. J. Weatherall. 1985. “A Highly Polymorphic DNA Marker Linked to Adult Polycystic Kidney Disease on Chromosome 16.” Nature 317 (6037): 542–44. https://doi.org/10.1038/317542a0.

  36. Reiter, Jeremy F., and Michel R. Leroux. 2017. “Genes and Molecular Pathways Underpinning Ciliopathies.” Nature Reviews Molecular Cell Biology 18 (9): 533–47. https://doi.org/10.1038/nrm.2017.60.

  37. Skalická, Katarína, Gabriela Hrčková, Anita Vaská, Ágnes Baranyaiová, and László Kovács. 2018. “Genetic Defects in Ciliary Genes in Autosomal Dominant Polycystic Kidney Disease.” World Journal of Nephrology 7 (2): 65–70. https://doi.org/10.5527/wjn.v7.i2.65.

  38. Strong, Alanna, Dong Li, Frank Mentch, Emma Bedoukian, Erum A. Hartung, Kevin Meyers, Cara Skraban, et al. 2021. “Ciliopathies: Coloring Outside of the Lines.” American Journal of Medical Genetics Part A 185 (3): 687–94. https://doi.org/10.1002/ajmg.a.62013.

  39. Tobin, Jonathan L., and Philip L. Beales. 2009. “The Nonmotile Ciliopathies.” Genetics in Medicine 11 (6): 386–402. https://doi.org/10.1097/GIM.0b013e3181a02882.

  40. Valente, Enza Maria, Rasim O. Rosti, Elizabeth Gibbs, and Joseph G. Gleeson. 2014. “Primary Cilia in Neurodevelopmental Disorders.” Nature Reviews. Neurology 10 (1): 27–36. https://doi.org/10.1038/nrneurol.2013.247.

  41. Vladar, Eszter K., and Tim Stearns. 2007. “Molecular Characterization of Centriole Assembly in Ciliated Epithelial Cells.” Journal of Cell Biology 178 (1): 31–42. https://doi.org/10.1083/jcb.200703064.

  42. Wheway, Gabrielle, Liliya Nazlamova, and John T. Hancock. 2018. “Signaling through the Primary Cilium.” Frontiers in Cell and Developmental Biology 6. https://www.frontiersin.org/articles/10.3389/fcell.2018.00008.

  43. Wright, Caroline F, Tomas W Fitzgerald, Wendy D Jones, Stephen Clayton, Jeremy F McRae, Margriet van Kogelenberg, Daniel A King, et al. 2015. “Genetic Diagnosis of Developmental Disorders in the DDD Study: A Scalable Analysis of Genome-Wide Research Data.” The Lancet 385 (9975): 1305–14. https://doi.org/10.1016/S0140-6736(14)61705-0.